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NON-RESONANT RELATIVISTIC INTERMOLECULAR FORCES
by
. William J. Meath
Depar tment of Chexﬂiétry; Universgity of Western Ontario, Léndon, Canada

-and Theoretical Chemistry Institute, University of Wisconsin,
Madison, Wisconsin

- ABSTRACT

The interaction of two like atoms in degenetgtg quantqm'states'
of the same energy and the interaction of two unlike atoms in
arbitrary states is considered in the BreitfPéuli,app:oXimation.

For these non*resonént interactions the calculation of the
relativistic long range interaction energy, tﬁrbugh '0(c£?) , is
discussed with specific allowance for degeneracy in the interacting
atoms. Possiﬁle intefactions where relativistic effects may be
important are discussed. As a specific example the interaction of
two spin degenerate atoms (I=0, S$0) is calculated through 0(:&2/R6)
(wvhere R 1is the interatomic separation). The non-relativistic
energy is given by the usual London dispersion energy which varies

as 1/R6 while relativistic effects introduce an interaction energy
which varies as GK?IRB.
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Theoretical Chemistry. Institute.
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1. Introduction

Relativistic or retardation effecté mc&if&'the interaction
bétween atoms and moiecules,appreciaﬁiy fdf‘large infermoleculaf N
separations, R, énd in general the ccrrespoﬁding’intéréctioﬁdengrgieé
for these systems cann0t be calculated aééuraéély fr@m the Cdulémb
poteﬁtial eﬁergy; It has been shown that modératély idng rénge_
inﬁéiéctioﬁ-energies cén be caiculaﬁedl’zkin the Breit-Pauli ‘

- approximation through 9(9&) ( where X = 81/7‘7‘@&‘3/337)-
By‘ﬁbderately long raﬁgevﬁe‘mean séparatioﬁs R suffiéiéntly iarge
that the charge distributions of the two interacting moleéﬁles do
notvoverlap and yet not large enoﬁgh to invoivé strong retardatioﬁ
effec»f:s, RLA . Here A= (K Aﬁ)d is the reduced w‘évé
-length characteristic of allowed transitions in tﬁe interaéting
molecules (AE is the corresponding eicitation enérgy). Fof’
R’v% or R > A quantum electrwdynémics often must ‘b‘e uséd |
to calCulate3 accurate interaction energies. ‘ .

In this paper the intéractionAof two like atoms iﬂ degengrate
quantum states of the same energy and'the'interactibnbof two unlike
atoms in arbitrary states is considered in the Breit-Pauii |
approximatio@, For‘these ﬁon-fesdnant intéfacﬁions the calcqlation
of the relativistic interaction energy, through C}Edf) s 1is
discussed,briefly in’generaliand allowance is made specifically
for dégéneracy in the interacting atoms. ‘Then some possible

interactions where relativistic effects may be important are discussed.



.The‘se ih;eraﬂiqns corresp'oAnd.to_ caseé_ where -the permanent electrostatic
‘dipole-dipole i_nte_r’actiqn éne;:gy iran'ishes and the lead term in the
1,/>B',-expanSi'on'of tﬁe‘ipteraction energy is ,gi\}en,by an okz /R3 permanent

V f;;agriefic 'dipole—dipole' interac;_ti'on énefgy; R These magneti:c interaction
energieé _aréb a‘il'so’ of impborta',nae,because they’fdo«nokt appear to.be |
rete;rdedz’lf_‘for 'v'ery largé values of ‘R . As a .sﬁefc.ific. example the
interaction of two.,s_pin dege_nerat'e (L=0, S # 0) atoms is 'calculated‘
,t'hrough' 9’ (&L/ R‘) »i It is found that the most 'impor_tant non- |
relafivistic ‘interaction 'ener'gy is the,qsualyLoﬁdo\n dispefsi'o_n enérgy‘

’- which ‘varies -as l/R»G while the relativistic interaction energy |
cqﬁtaips a.term which va_ri'es» as voLZIRB_ ‘. Forv the i;nteraciéion of two |
non-dégenerate_ atoms (LA=‘ s = 0) ‘t‘he fesults of this papef ;re’duce' to
those ébtained previousljl‘(a-). |

in this w'Z)rk atomic units are used; ener gy ~e3'/o;°, length ~ @,
where d—o is? the Bohr radius. The coqrd,inate system fér the

"calcula’t%.ion.-of the ,i-nvte4ractivon energies is .,the same as that ‘usedl in
refs. l-apd 5. For the Avinteractio‘n_ ’o'f two atoms a and b the
non-:elgtivist:;ic eigenfunctions %A) and- "ﬁ(B), respec_tivé’l‘y,
represent stateé of shérp, a#gu_lar momentum (botbh spin '8 and orbital

r‘];'_.-_).-. ~The'set; of quantum numbers A, char‘acteriéing fhe state' of atom a

.is given by

(1-1) -
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2. Long Range Interaction Energies in the Breit-Pauli Aggroximation‘
(a)-Thé'Multigole‘ExganSion of the Kreit-Péuli‘Hamiltonian

In the generalized,Breit-Pauli\approxiﬁaiidn to the

relativistic Hamiltonian (with nuclei held fixed)6 is given by7 :
= H +«H R :
H =- He + A rel : Sy E (2 1)

where H, is the usual non-relativistic Hamiltonian for the system.
The relativistic correction, Hrel , includes terms which allow for
magnetichnteractions'between‘the electrons in the Systém and has

the form8

H. = Hy + Hgg + Hgy, + H, + H (2-.-2)

: ‘ , g (1a,7)
The various terms in H 4 have the following significance :

_ HLL corresponds to the intéféction of the 6£bital'magnetic moments
of the electrons in the system; HSS. gives the interaction between
the spin magnetic moments of the electrons; HSL _represents the
interaction between the spin magnetic moments and the orbital

magnetic moments of the electrons in the system; Hp is a relativistic
correction due to the variation of electron mass with velocity and

HD appears to havg ne simple intérpretation.

The "multipole expansion' of the Breit-Pauli Hamiltonianl(a)’z’g’lp’11

1(a),2

is used for the calculation of long range interaction energies

-through 69(0674, If the charge'distributions of the interacting



atoms a and b do not overlap12 then one can ShQthhat
o S ' ,w | :
, , e
Ho=HorHo eV 5 Vo= BVL/R™

and

: int . |
H.‘" - Hozo +He Ho;ov: H@,‘,“)»‘"’Ha;,o“”

. 0o
int zij }4 . "~
H( oy CJM/R ) 0—= LL)SSJSL‘) P)D"*, .
m=t ' : (2“4)
In Eq. (2-3) Ve is the non-relativistic interaqtion botential and
the expansion coefficients Vm represent the 1nteraction5 of various
electrostatic multipoles of atom a with those of atom b . In Eq. (2-4)
the 'Ftsg“) are the relativistic Hamiltomians of thg isolated atom

it

a and HG’ is the relativistic interaction potential corresponding

to the relativistic correction € . The eipansion coefficients }irﬁn
. ) : Y

1(a),9 of various orbital and spin magnetic

‘represent the interaction
multipoles of atom 'a with those of atom b . General expreésions

for the }46”“ are derived in ref. 9 and it should be noted that

Bsp,1 = Bss,1 = Pss,2 = Fpm>o T Fomo <O

-

(2-5)

The non=-zero multipole expansion coefficients, through G)(bﬂ%’) s

are of specific interest in this paper and ére discussed briefly



in the Appendix (see also ref. 1(a)).

7(e) one would expect that

two atoms a and b with magnetic dipoles mm)z —-;—f[."-:“)"'l‘éu,J

and M(L)‘-‘ ""?3(: [l:.u’) T2 .S.“’),] respectively, would have a

From semi-classical considerations

magnetic dipole-dipole interaction Hamiltonian

Hm05 - [MA(M'MU’) - 3Mé“) M}(b)]

s.c. R? * (2-6)

N

The relativistic multipole expansion coefficients He o for
: , -

1(a)

¢ = LL, $S, and SL, can be written in the form (see Appendix)

Haa= [y + Xgs Kegs =0 (2-7)

where [:3 corresponds to the semi-classical Hamiltonian and the
b

xo’,: represent correction terms; thus

ma ‘ j

H ’ = °<l[-'[:l.'3+r1 ""l—j ) (2-8)
S.C. —— s $s,2 SL,Z *
R.? _

The expansion coefficients [;3 for ¢=LL,SS,SL  represent

respectively; the magnetic orbit-orbit, spin-spin and spin-orbit

dipole interactions between atoms a and b.



(b) Calculation of the Interaction Energy

Consider the interaction of two atoms a and b in the
quantum states A' ‘and B'' respectively. In the Breit-Pauli:
approximation the relativistic Schrgdinger equation for the diatomic
molecule a - b 4is given by

Hq:/ = (He, +°<LHre_l)‘% = g? .

(2-9)

This equation can be solvedl, for moderately large ‘R , for the
energy Elsthrough all orders in Ve and through first order in okz.

First the non-relativistic problem
He ('K = EK \K (2-10)

is solved by perturbation theory using PJO = LJO(“)i'}Jo(b)
as the unperturbed Hamiltonian and the multipole expansion of Ve
-as the perturbation. This gives'a 1/R expansion for the non-

relativistic wave function and energy

oD

W( = Kw "'MZ, %(K)/RM (2-11)

=3

Ek = (RL,SD) +C ik ,8) + Z Cater /R™
mz=2

(2-12)



Hére K corresponds to the good quantum numbers for the combined
o ‘
two atom system and the C”&K)/R are the non-relativistic
. . . . . 5 .. . ‘
interaction energies which include” dispersion forces as well as
terms representing the direct interaction between permanent electro-
static multlpole moments of the interacting atoms. The zero-th
order wave functions, Ty ., must be chosen to diagonalize -
appropriate perturbation Hamiltonians (see below). Having obtained
an expression for the non-relativistic wave function it is easy to

i 14
1(a) that one can obtain a 1/R expansion for the energy

through '@'(d\z’)

gK = EK o™ Z g:,)(K? o (2-13)
q
where

oo
(1 )] ) , m
(b K
(K) (M‘l’ ‘)0’ + MZ _:|\/\4;m€\ )/R (2-14)

show

-and
m m-

tK) = ; Z < (K) ”“(4 L}/(K,)e > (2-15)

=0 %-O
) ,
Here the (?‘) are the rélativistic corrections .to the energy of
the isolated atom and the \/\/‘;A{K)/R are the &(D( )

‘relativistic interaction energies.

Combining the above results the interaction energy (including



‘both relativistic and non-relativistic terms) is given by

o0
fbb(x) = Z:'(_:,,,!K)/Rm~ + Z» fa‘: (o)
m=2

(2-16)

where

f () = A" Z\/\/ ) /R™

.y (2-17)

K
ga-L(() is the relativistic interaction energy arising»fromfthe
interaction of magnetic multipoles whlch occur in the multipole

int
expans :Lon of H

. The lead terms in the expansion of é)ad-“()
arise from coefficients C,,,!K) that are first order in Ve and
zero-th order in & or from coefficients \/\/o;,,,{") that are first

order in o(z' and zero-th order in Ve » It is easy to show that

the interaction -energy through G(v’}/ﬂ?) is given byl5

g (k) C (k) -l [\/\/LL,(K) +‘W (k) + W(K) ]_[...
R R rR* Q‘? |
(2-18)

where

Cooo = LKV IR

(2-19)

W, (k) = W, L0 + \/\/5L )
- (2-20)



Wik = W + W go W o

(2-21)

rand

\M(,,,.E") = <%<CO)IHJ,m~) %m> ,m= 1,22

(2-22)

The c‘oefficients CM\(K) and ‘\/\/6,,,5*0 , for m 22

involveyl6 ‘the %K) with values of 23 . Fer the interaction
of two nénwdegenerate (L'=S'=0) atoms it is easy to show. that the
interaction energy through @ (J*l/ﬁg) ‘is zero. In this case

. N f 1
‘the interaction energy has the form

£, - Co/R + LW /R +ok™ W /R -

(2-23)

and this result has been discussed in detail in ref. 1.

The limitations on the use d& the Breit-fauli approxiniai:iori
‘are discussed in detai117 in’refs° 1 and 7. Of particular impertance
1is the fact that in general the interaction energies calculated
using this approximation are accurate only for IQ<X . For
examplel fory the interaction of non-degenerate -atoms -the Breit<Pauli
approximation fails to represent the interaction acc—uratelj for ‘

R>06%X. It should be noted however that in the non-resonant

10



" interactions discussed here the energy corresponding to-the interaction

of permanent electrostatic or magnetic dipoles appears to be validz’4

-even for large R .

'~Constvuction of the Zero-th Order Wavefunctions -

In order to actually calculate the interaction energy for a

: 40)
- specific problem one must know the zero-th order wave functions 9’ .

' These are constructed from the solutions to the non-relativistic

v'4 »Schrodinger equation for the isolated atoms a and b 'in the quantum

| ‘'states A' and B' respectively. Here we will limit the discussion
"to non-resonant interactions.
Instead of using eigenfunctions of Lz(a) and ~Sz(a); to
‘ L‘/fo) 18
construct the K , it will often be more convenient for our

purposes to choose instead orthonormal eigenfunctions of Jz(a) a,nfd'

o 3,(8) ‘where J(o-) = \_-_-_(‘L) +S (o) ;

(-ﬁ(&';:m;.) = Z (%(A'))%(&',S,’M}D‘Emo (2-24)
: ML Mg, ’ |

o
¥ 4 L Y .
Here. Ja. = L‘c, +So—,'“ Tty “—-ov"' Sa:, and where, from

Eq. (1-3),

- H@@wsimn = €5 Liazmg) . e

11



« v (o)
- The proper non-relativistic zero-th order wave functioms, Yy ,:

for the long range interaction of two like atoms in states with the.
same energy or two unlike atoms in arbitrary states (non-resonant

19
1nteract10ns) can.be WrJ_tten in the follow1ng fo;rm )

_Li/“” PDEREA (& T ML) Qs M >W/‘ ’?

Jﬂ..ljb MJ’MJ‘ P
X (P(A' 5 ms) (Q;?;’AM;;’)

(2-26)

h ,' . Lo j) l . ¢ PR e1.50e)
Wherg'o_f course H,, (PKQ = [E,JLL' 5‘)‘[“6:5(&’[_' S')] ('P
The coefficients (&(&’,J,’M&) Cﬂ’(k J‘ MJ)‘(_’/“)) .are chosen
to diagonallizé13 approprlate perturbatlon Hamlltonlans (1 e, the

desired v -and 'H,m ) subject to the condition that

<q’/<(o)) lo)> gK,K R ' | .(2‘27).‘

3. 'Non-resomant Interaction Energies for Atoms in Degenerg_i:ev'States '

In this section we prove -two theorems that apply for non-resonant;

: atomié _interacj:ions.

Lef the two interacting atoms a ‘,and b have electrqsta"tic‘
dipole moments /u-(a) and /y_((lv)and magnetic dipole moments fb_ﬁ(a) ,énd
M(b) respectively. Then ffom semi—élassical considerations'or‘xe sl
‘would expect that the interaction energy through @(D( /R )would be

given by

£ 10 = Cuo/R? +ok* W /R + -

(3-1)

12



13

(3-2)

Here CQEK)/QQ is the:usual éerma,nent e;.lectrostatic dipole~-dipole
interaction energy and O(z 3. (,K)/Rg - is thg permanent magnetic
dipole-dipole interactionzo energy that one would expect from Eq. (2-8).
Using Eq. (3-1) and (2-18) the interaction ener gy through e(o@/R’)

can be written as

E&%(m: gs.c‘.“’ + g.c.“‘) t - (3-3)

where ‘

gN ) = oL* [\/\/LL}.K)/R +W, (/R + \/\/:,.)N,,_‘CKD/Q:”]
(3-4)

) ~ C ‘
\/\4 N(K) < “ , Xu,,?- + , MS‘L,?“ L},’({ )7,

(3-5)

‘The interaction energy E)N c(K) is a non-classical correction to

the semi-classical result of Eq. (3-1).

2)n?2
‘Thegrem I: The interaction -energy through &(d /R%) is identically

equal. to the semi-classical result,

ga,\,(m = Lot - (3-6)



Pr@@fg ‘Define the integrals
I,‘M = (%(&',55‘1%})_]9?2@)1 %(&',3’; My))
T= Qw5 M)l Dyta) | QKT 30 >
T, = <R M) | Ow | Pt 5,50 7
| (3-7)

4 4 7 4
where JI; and J can have the values ‘ILo.“"’ So-!, T, Lo So-'
a

o O . m
-and similarly for atom ‘b . The spherical.tensor operators J

17
Dg -and 0? are discussed in the Appendix, Using the commutator
relations given by Eqs. (A-2) - (A-4) it is easy to show that21
g’ . S { -0 -
Lo =Tt =T, ) =0 s

and similarly for atom b .

‘From Eqs. (2*19f)-(2421)' a‘n‘d( (2-26) and the expressions for the
multipole expansion coefficients given in the Appendix one can show
‘that ‘the coefficients \iWLL,l(K)’ =W2(K) and - WBgNeCQ (K) ‘are

expressible as ‘a sum .of terms each of which contains at least one of

the integrals-givén by Eq. (3-8). Hence gN c (K} wvanishes-and one

obtains ‘the result of Eq (3-6).
We ¢onclude -from theorem'I that although the relativistic

Hamiltonian's Ho and H yield miltipole expansion coefficients

: 8L
2 : '
af . @(‘* KR) and Q (Pe/QL) s there are no relativistic interaction

-energies of the sazme order in 1/R.

14



"From Egqs. (3-1) and (3~6) it is clear that for the relativistic
interaction energies to be important the non-relativistic interaction
k4
energy C3 (K)/ R must vanish leaving

€ 00 = ok Wi LR/RT + - »

(3-9)

-In‘Sec. 4 wvarious possibleinteractioné .are -discussed which lead to

an interaction - energy of the form given by Eq. (3-9) and the case of

¢ ¢ .
. the spln-’degenerate (L = L‘ =0, S“—*DJ SJ’ #09 -interaction ‘is-

2/pé
worked out -explicitly through QC‘* /R )

Theorem II: The interaction energies that are first order in Ve

, . 2
and zero-th order in o§2 or first order in oA and zero-th order in
Ve are identically zero when averaged over the original zero-th

22
order degenerate states .

Proof: The interaction emergies of interest in the theorem involve

matrix elements of the type

4T7K = ( MIT‘ q/loi (3-10)

where T is a- perturbation operator wh:Lch can be wr:.tten

1(2),9 (see Appendix) by

Z Z ZA( l“”")T —E“’) : (3-11)

"4-'-0 1'*0 "ee

symbolically

15



M
Here the .‘;(OJ are irredﬁcible gspherical tengor operator323 with
réséect to the total angular momentum operator, .3—(0\-) ., of atom a
-and similarly for atom b , while A(ﬁ J,.,ms) is a number.
Summing <T7K over all the zero-th o;der degenerat;e states gna

~ using Eqs. (2-26) and (3-10) gives.

<:‘:>K= .24_[.)“ Z Z.\ Z 4,1», m)

‘J;’J—)’ MJ‘)M)- »oi,)z,
XL, M | T, @l Qi smoy
xS Qi 3,m5)] Ty om | Q&5 MDD

(3-12)

This expression can be simplified by using the‘Wigher-Eckart

theoreng’24 and ihtroducing the Clebsch-Gordan coefficient C ,

LDy MJH Tl azm)y
C(:yqf,“pa, T;)'MJ;;,'M\,MJ::)
x <BL TN Ty b, T

(3-13)

23,24

‘where <‘p€ j I)D (&)”A&,J—,_7 is -the- reduced matrix element

..for the set of tensors J, (M and ksn.m;q.larly for atom b .
p T

Applying the Wigner Eckart theorem to-Eq. (3-12) and using the



17

orthogonality condition Z C(JJJ J’ MJ} 0, MJ) = {
it is easy to show that <T7 O and hence theorem IT.

As a result of theorem II when the interacﬁion energy
“is averaged over all original degeneracies the relativistic -
interaction energy through SCO( ) will have ‘a 1ead term given by
the @(QLL/Q ) energy discussed previo,usly1 and the non-relativistic
interaction energy will have a lead term given by the London diépersion

‘energy (see Sec. 4 for an example).

4. Examples
For the interaction of degenerate atomsg. the lead term in the

1/R-expansion of the non-relativistic interaction energy is usually
“the 1/R5 electrostatic quadrapble-quadrapole energy. However, in
some cases, the non-relativistic interaction -energy can have lower
order terms in 1/R. For example for the interaction of two hydrogen
atoms, in states with principle quantum number n=2 , the interaction
energy has an 1/1-3\3 electrostatic dipole-dipole term (see ref. 12 and
footnote 21). 1In genéral, then, if the non-relativistic intneract:ion
-energy C (K)/Q vanlshes ‘there is a possibility that the

2 2
relativistic corrections o \/\/355?2“)/9 may be important. For

o, 3
L; or L; equal zero C (K) vanishes and from the selection rules2
for the relativistic: multlpole expansion coefficients r B r
LL,3 ’ °8s,3
-and FSL one can select interactions for which the relat1v1st1c
53 25

interaction energles -of @ﬁ* /zz)are not zero. -Some possible interactions

(6)
are given in Tabl“e 1 [,note (‘P‘” LL3‘ q/ ° >~Olf L, or L, equal zero]



18

Table I

+Some Possible Interactions for which C;‘K) = 0 and

Wsls? . <%‘°’n;; +’(;3’m¢;"’7¢o

)

¢

Lo | L | ose | s e IR il

0 -0 $0 + 0 . F o0
£0 0 #0 | #0 | %0 %0
0 0 %0 %0 i £0 0
$0 0 0 $£0 0 F0
0 0 £0 o 0 - $0

The Interaction of Two Spin Degenerate Atoms

As a specific example consider the interaction of two atoms a

and b in the states .A' and B' defined by

A!: (‘kalu O) OJ. S":/ MS’L)
8!:‘ [kk’) ojoj .S-],l, Mlsb)

In this section the interaction energy‘ for this problem, gab“{)
2/pé . :

is calculated through @(0( /Q ) . The mathematical techniques used,

which include applications of the Wigner-Eckart theorem, have been

'1(3)', 26

discussed in detail previocusly and wi'.l_l be mentioned here

‘only briefly.



: 27
The non-relativistic zero~th order wave functions have ‘the form

¢ = ) L QR

M-éa.' MS» : et

where

Al Z’(Cﬁ L AT 24 A Peartfisoy
g,
= gK)K’ .

‘8ince the degemneracy in the problem is characterized by the spin
projection quantum numbers of the interacting atoms it cannot be

. . .. A’\ ey
removed by the spin free perturbations ‘Vey HLL 5 Hp and H‘D Tso

(o)
these spin free perturbations are diagonal with respect to the Y

for any choice of the expansion coefficients <(—PACH') (PJB')“H(“)7

consistent with Eq. (4-3). Using Eq. (4=3) it is easy to show that

m~ m
the spin free interaction energies C,,,,.(K)/R and O(L\’\/Oj/m‘K)/R)

for ¢ = LL, p, and D, are independent of the quantum number K

.and for convenience we write

pd) ,
Through Q(/Q) the non-relativistic interaction energy is given

. ’ (3
by the Londo,n28 dispersion energy Cg /e where

| a) b)
C - -3 Z Sirs Sy

L = "=

(4-5)

19

25, [AER,1,59+AE, (2,159] AE.(R,15) BEWRLS)



~(0.)
'
Here f(k,,;S) ig the mean oscillator strength for the

/
transition (&a.; Lmz o, S.,:) had (pfo., La."zso:) 5

20

(&) / / ’ ‘ | 2
8,50 = 24€,(8,,8) K‘E_(&, 0,05, Mg | yte) }%{A,:,o, ISR

(4-6)
“whetre Aea(ha’asl) = ea;(k,'\ljsl)"éalé,a/ 5')
is tine excitation energy corresponding to this transition. The
integrals in Eq. (4-6) are independent of the choice of M_; and
“S'$ M; £ S‘ . Unless the statesnlabelevd by the q.uan;:tum
numbers A' and B' happen to correspond to degenerate ground states
the coefficient Cé is not necessarily negative and the London
dispersion energy is not necessarily attractive’,

The only non-zero contributions to the interaction energy,
through @(9(1/9‘) s from the spin free relativistic Hamiltonians
are given by
g’l’u_\_) = o(L_\/\/LL?(, JRY  + L* \/\/LL,(,/Q(’

4-7)

and

gado’) =3 O(z\'\/o’lg /Ré ) qg= FJD

(4-8)

The most important contribution fr ‘ »
portant contribution from H‘LL’ HP and H‘D to the

interaction energy is given by  ot* Wiy /R‘* where!?2?

-
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fo
\/\/L'-A; = 1< %(K)‘)HLM LP )
Z Sihyer $ s

.,L,, [DE(R,L,S)+DELR1S)]

%-9)

'F?? the’iﬁferactionﬁof twq g;oupd gtate atoms WLL,4 isfpositivgy.
giving rise to ayrgpulsiﬁe interaction énergy. Thié is not neceséarily
the case for an interaction involving a degenerate atbm. -Thé
coefficients corresponding to the _@(dv/kb) interaction énergies

in Eés. (4-7) and (4-8) are given by

\A/LL,L = 2¢< ‘-Pml HLL,&'%‘K)? "'2‘_(%(“,/1"{“_/3 ’%‘(.K)>
+2 <LP“)'HLL;0 ¥ (> + LKoo | He B k)

(4-,-1(’))‘

Wey = 24BNl o + L oo ) Hg, 14007

«=p,D (4-11)

The explicit.expressions for the coefficients given by Eqs. (4-10)
and (4 11) are. essentlally identical to those for the 1nteract10n of

1(a)

two non-degenerate atoms and since they give rise to interaction
energies of . €>(ﬁk ) smaller than the  London energy we do not

consider them further here.



It can be shown by stralghtforward but 1engthy, calculation
involving the ngner-Eckart theorem that the spin orbit Hamiltonian,

S

The spin-spin Hamiltonian is not dlagonal th»h respect to the

(o)
non-relativistic zero-th order wave »functions, K s for arbitrary

(o)
chQJ.ces of the expansmn coefficients <(‘P (A')(P (6') “l} >
These coeff1c1ents are chosen to satlsfy Eq (4 3) and to diagonalize

the (spln-dlpole)- (spln-dlpole) interaction Hamiltonian'
] () o) - .
< q{( )HSS,.?’% > \A(gsl (k) gk K’ T (4-12)

It can be shown that the zero-th order wave functioms calculated in

"this manner ensure that the sp1n spin Hamlltonlan, H is diagonal

ss ?
with respect to the K“) (at least through @(v("/ks) )5 It
ohould be pointed out that the diagonalization of HSS,B can be
catried out exaotly since HS-S,B is exptes?ed ;'.n terms of itreduCible
spherical spin t:(-:n'sors,AS[i1 , of the atoms a and ibf. The raequired

integrals over tifese spin tensors can be calculated exactly™";
LG my, som)) S |Gk LM, s, Me) >
8, é,_,_{, SS,SES(Sﬂ)]

x CISIS’, Mg,/m,MS) .

(4-13)

22

/pb
H L ? ‘makes no contribution to the :mteractlon energy through @(d\ /R*),
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Substituting Eqs. (4-2), (A-5) into Eq. (4-12) and using Eq. (4-13)

one obtalns

Ss 3(K) = Z\ Z ﬁsl ""‘)<(ﬂ(£1 DSMS)('P ko aS MS)M/ 7

MS)NSB -ly o
X (LKMI (PJ&SO) 0,5, Mg-m) (PL (4’ 0,0 Mg +m.) >

X COSLL S M om) CUSE 1,55 Mg, m)

(4-14)

‘In general W 3(K) is non-zero and gives rise to a relat1v1st1c
(spln-dlpole) (spln-dlpole) interaction energy 0( »%é$1?(*‘2/x2

6
The contrlbution of HSS to the interaction energy through éDGizZE )

is given by

CPNser = o WL/RE o W  (R/RE

ak 55,1 .
© (4-15)

. where

= 2B e [ 00 D +{ t0lHgg, |02,

(4-16)

2

N

N o~

vy
§

The coeff1c1ent 1) ‘is similar in structure to the result for

s5,6 ,
1(a)
the interaction of two non-degenerate atoms

and since it is of
2 ' :
69(°k-)smaller'than the London dispersion energy we do not consider

it further here.
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Combining .the results of Eqs. (4-5)~(4-15) we obtain an

expression for the interaction energy for the spin degenerate problem

o =C + ot Wsel 4o \A/w .h,(?—\/\/‘ Y

————

RL R? R R L .

| | ' (4-15)
" Here \/\/L = Eo‘l W‘CL -and Since ‘the 9(&7’/2‘) .energy is of ordeo
5 x<10-5 smaller than the London energy we shall neglectso it in
what follows. i
In order to obtain numerical values for the coeff1c1ents in
Eq. (4-15) consider the interaction of two doublet atoms (si= Sb"l')
The proper zero-th order wave functlons whlch dlagonallze HSS,3

and the correspondlng coefficients W (K) are glven by31

88,3

(o) ‘ | . .
LP(Z, z # L{(L0,0,Vz,*V;) (K(bo,o,'/z, Vo) = (K[b 0,0, V,_,V,_)Lg(i,ggl/b-yz)]
X ~ o

(0)
W(gz) = qoo.(boz 0,% ;%) (70& (o0 VY2, Y2)

{o)

itz 5 s Romorms s sl
t})f{’zg;' )= (7?«“/ 00 va 1) (L2582 1)

(4-16)

W T = W, (P5) = 4
Wi sCI) = W, (1) = v

(4-17)
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)The’vanishing of the coefficient ('Zc) c¢orresponds to the fact

ss,3
that the Z.lo state of the hydrogen molecule has zero total spin.:
To cdlculate values for the other coefficients in Eq. (4-15) explicit
eXpréSsioﬁs for the wave functions of the interacting atoms are
PR 32 . .33
required These coefficients are readlly available or estimated

for ‘the 1nteract10n of two ground state hydrogen atoms. The resulting

interaction energies are

(L) = “‘._5." + 040 A" .

RE 7
E.CZ)

i

=650 4 o.gokt +

a——

R oF
85(32') = ga.b(?g-.;) T -éSo 4

Wov

| %

0.4—09(” .,o(" + - -
Qé sz 5:'_3 .

(4-18)

The r‘elativisti‘c interaction energies given in Eqs. (4-18) are
cognpared with the London dispersion energy, Ug - _Q,SD/R‘ :
in Fig. I where ratios of the form ub(K)/UG are plotted against
f:he interatomic separation R . For the interactions represented
by the 2 ﬁotential energy curx}es the relativistic interaction
energy, which is-dominated byvt‘he- (spin-ﬁdipole)-(spin-—dipole) energy,
is an apprec1ab1e fraction of the London dispersion energy for

34 721
relatively small values 0of R . For example for the curve



the relativistic interaction energy is 10 per cent of the London energy
at R"'lzao while for the 2-3“ states the relativistic energies

are 10 per cent of the London energy for R""g Dlao . 'When the sum

3 .
of the three ‘zz potential energy curves is taken: the (spin-dipole)-

(spin-dipole) interaction energy vanishes in agreement with Theorem II.
; Th,e‘ relativistic interaction energies of @uyﬁs') discussed in

this paper may be of importance in atomic scatt‘ering-experimentéBs.

They are also important because they appear not to be retarded2’4

at large intermolecular separations and therefore will sometimes

be the lead term in the 1/R expansion of the very long range

interaction energy.
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Appendix. Expanpion Coefficients of the Breit-Pauli Hamiltonian

In this Appendix we giveiexplicit expressions for the expansion
coefficients HL“‘Lr,vm" HSS,ml" HSL,m .Aand v, for O( mLY
‘that are required in'Secs. 3 and 4, These are also given infref, 1(a)
‘but appear here in a much simplified\form° Thé multipole expansion
coefficients are-e%pressed as products of irreducible spherical tensor
operators of the atoms a and b . Most of these»pperators;(seé~
-below) are defined in fef;l(a)cIn what follows the space-and spiﬁ
‘coordinates of an electron'in-atom -a., referred torfhe.nucleus of
atom -a., are designated bY'l]k and §£&_ respectively. ‘We also make

use of a permutation operater P which permutes all indices

ab

.associated with atom a with the corresponding indices of atom b ;

Py Seab) = £0b,0).

‘It is convenient to define the following temsorial operators;

m o , TS
O ta) = ; TkaEA) ) N./TM = ; T,—(QSJL)

e = %Z T Casa)

(a-1)

’ T .
‘and similarly for atom -b. The tensors ‘T:(ﬂﬁ)y T;(B_B_) , and the
other spherical tensors used in this paper are defined in réf. 1(d).
The following commutation relations for some of the tenaorial

operators .are useful

27



¢ tHc(a) )Q?o.)] < 9r:"(\o»)

(A-2)
. ~ m
L2l Hw, Q,w] = D, ta

(A-3)
{,[HJ&) ,N,”?M] = O,mta)

a-4)

Non-zero Multipole Expansion Coefficients -thfoggh O (/R3%)

1

\é = 'ﬂe(m\) Qﬂ?;) Qm(\b) ) o (0) =~ 2 )ﬂ,{(i"l) =]

Z ‘9‘”")9@9“’) 5 Pt =", B (Tn=

ma=i

=
Hu. ) - Pa.b}§ Z u."’"’ [ e - (3/1)/LD‘“)9;“’)}

ﬂLL,l(-') = @—L ;( ) ‘="‘-’/:l. -

Hs, = 11-8 Z )QSL, m O §00)

— ﬁSL l(-') - p""}"‘(‘) N

Z ,Q,_‘_ﬁram) m L (b)

Mz
Pu,z®= /"' ) /91.1. {r=-"¢
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21! M.
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MSME ML,
LM, X @, 89
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0)
' Z' <<Plﬂ'1° M:)(F.,(A'J'MJ)ILP‘ '5 P Qe 3m)
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The coefficient W is easily estimated by the procedure

"LL,4
discussed in ref. 1(a). The interaction energy o(z'Wg/ﬂ"

is negligible compared to the Lopdon dispersion energy (see

ref. 1(a). | ‘ :

For example for the relativistic interaction energy O(LWLL,L'./R¢

to be 10 per cent of the absolute value of the London energy

would require R « 180 a, (for the H-H interaction).

-See the discussion in ref. 1(b). These effects may be of

particular interest in the scattering of beams of pbdlarized

atoms.
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